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Abstract— Constant effort is being dedicated in building robots 
that can supplant laborious work performed by humans with 
automated mechanisms. In this regard a large number of 
researches have been dedicated to emulate gaits of legged 
animals. Debris removal and excavation are activities of human 
interest that can be achieved with gaits of animals. The Klann-
mechanism based legged robots can act not only as robots that 
can access difficult terrains but also as robots that can remove 
debris and act for excavation purposes. In this work we have 
explored the various trajectories of the end-effector of the Klann 
mechanism that can be suitable for this purpose. The trajectory 
curve of the end-effector of Klann-mechanism has been 
generated by solving trigonometric equations that can produce a 
continuous curve as a function of the input angle φ. By varying 
the length of the links , perspicuity has been gained in achieving 
trajectory suitable for this purpose. Fruitful gaits pertaining to 
this purpose has been identified. With reconfigurable links, all 
these trajectories can be achieved by a single set of legs.  The 
trend of the impact force with the angular velocity has also been 
identified. The study of the impact force for this purpose is 
crucial as it entails the removal of heavy and tough objects and 
the choice of materials for the links and end effector can 
accordingly be made. This study validates the possibility of 
achieving walking robots with reconfigurable links that can 
double-up as debris remover and excavator.        

 

I. INTRODUCTION 
hile legged robots have always been a choice 
for a variety of applications like accessing 

extreme and inaccessible terrains[1] , given their 
versatility in bio-mimicry , legged robots are also 
extremely capable of debris removal and excavation. 
For legged robots , various design approaches are there 
to generate gait patterns , which includes : biomimetic 
adaptations based on ground contact timing[2] , graph 
search approach[3] , mechanical energy constraints[4] 
,zero moment point model [5] to name a few. 
Currently , extensive study is being carried out in 
generating gait by generating trajectory of the limbs of 
the robot. Reconfigurable foot traces using the Klann 
mechanism has already been explored with six distinct 
walking patterns identified [6] where in , the authors 
presents the Klann based reconfigurable design and 
implementation where a robot changes its structural 
morphology by changing its components and sub-
assembly parameters to adapt to multi-terrain and 
multi-tasking by producing a wide set of novel gait 
patterns. An outline of the synchronization of the legs 
of a quadruped robots to maintain stability of the 
platform has also been provided [7]. In this work we 
have tried to revisit the previously identified 

trajectories and identified novel trajectories suitable for 
excavation purposes. 
 In previous studies , the trajectory of the end effector 
has been plotted by interpolation of polynomial 
equations. Our work is unique because we have 
defined the trajectory by solving trigonometric 
equations to plot the change is the position of end 
effector with change in the input angle. This approach 
eliminates the possibility of error in ascertaining 
values of co-efficient terms of polynomials during 
interpolation that occurs when sufficient data points 
are not available. This approach also provides valuable 
information regarding the choice of link lengths that 
will produce the desired trajectories.  
 The standard path of hydraulic excavators has been 
tracked in [8] which shows the cyclic nature of such 
curves. The ‘return’ region of the trajectory of the 
hydraulic excavator is essentially a vertical drop with 
increase in the acceleration along the y direction with 
descend. The previously identified trajectory for the 
digging gait [6] in Klann mechanism significantly 
resembles this curve. 
 

 
 
Figure 1 , ref [8] Trejectory of a hydraulic excavator 

 

II. PROBLEM APPROACH 

In this study the position of the points O , G and D are 
fixed( figure 3). The input link is 𝑙𝑙1, which undergoes 
complete rotation . It is the link adjacent to the fixed 
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link and it is the smallest link in the four bar linkage 
which include 𝑙𝑙1, 𝑙𝑙3, 𝑙𝑙2and GO. GO is the fixed link. The 
link 𝑙𝑙1 and the link 𝑙𝑙2 acts as the crank and the rocker 
respectively. The lengths 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5, 𝑙𝑙6 and 𝑙𝑙7 can be 
varied using reconfigurable links to generate different 
gaits. In [9], reconfigurable leg hoppers has been 
identified as instruments for varying leg lengths in 
adaptive locomotion. The lengths 𝑙𝑙1 along with the 
position of O , G and D are constants. The position of 
point O, G and D are invariable because they are 
points on the fixed link and the gap between these 
points cannot be varied in all practical purposes. In 
this approach the length of the input link has also 
been kept fixed for two reasons :  𝑙𝑙1 needs to 
maintain the status of the smallest link in the 𝑙𝑙1- 𝑙𝑙3-𝑙𝑙2-
GO four bar mechanism to ensure complete rotation , 
also 𝑙𝑙1  is the smallest link and installation of 
reconfigurable link hoppers can be difficult at certain 
cases.  The length of 𝑙𝑙2 and 𝑙𝑙3  can be varied as long as 
the Grashof’s law is maintained.  Link 3 and link 5 are 
stiff links hence angle α and 𝛽𝛽 are constant for a 
specific model. 

All the link lengths have been varied such that the end 
effector passes close to the ground level at least once 
in each cycle. The ground level has been ascertained 
in case I , which pertains to the default trajectory for 
walking. This ensures the stability of the platform of 
quadruped robots with proper synchronization , such 
that three legs of the robot are in touch with the 
ground while the other leg is up in the air [7]. 

 

Figure 2 

 

Figure 3 

 

Figure 4 

 

 

III. EQUATIONS TO SOLVE THE PROBLEM 

 

By using polar complex equations ,position of joint B = 
𝒍𝒍𝟏𝟏.𝒆𝒆𝒊𝒊.𝝋𝝋 + 𝒍𝒍𝟑𝟑.𝒆𝒆𝒊𝒊𝑻𝑻𝟏𝟏 = �𝒙𝒙𝒈𝒈 + 𝒊𝒊𝒚𝒚𝒈𝒈� + 𝐥𝐥𝟐𝟐. 𝐞𝐞𝐢𝐢𝐢𝐢  (equation 
i) 

Position of C = 𝑩𝑩 + 𝒍𝒍𝟒𝟒
𝒊𝒊𝑻𝑻𝟑𝟑 = (𝒙𝒙𝒅𝒅 + 𝒊𝒊𝒚𝒚𝒅𝒅) + 𝒍𝒍𝟓𝟓.𝒆𝒆𝒊𝒊𝒊𝒊 +

 𝒍𝒍𝟔𝟔. 𝒆𝒆𝒊𝒊𝑻𝑻𝟐𝟐  (Where B is the polar vector position of point 
B according to figure 2.) 

On substituting 𝑻𝑻𝟑𝟑 = 𝒂𝒂 + 𝑻𝑻𝟐𝟐 − 𝝅𝝅 , the equation 
above becomes , 

=>  𝑩𝑩 + 𝒍𝒍𝟒𝟒
𝒊𝒊(𝒂𝒂+𝑻𝑻𝟏𝟏−𝝅𝝅) = (𝒙𝒙𝒅𝒅 + 𝒊𝒊𝒚𝒚𝒅𝒅) + 𝒍𝒍𝟓𝟓.𝒆𝒆𝒊𝒊𝒊𝒊 +

 𝒍𝒍𝟔𝟔. 𝒆𝒆𝒊𝒊𝑻𝑻𝟐𝟐  (equation ii) 
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Solving equation (i) by taking  𝑙𝑙2   𝑒𝑒𝑖𝑖 𝐷𝐷 on one side and 
all the other terms on the other side , then multiplying 
the corresponding terms of each side  with the 
equation formed by taking conjugate of 𝑙𝑙2   𝑒𝑒𝑖𝑖 𝐷𝐷 on 
either side of the equation , we eliminate the term 
𝑒𝑒𝑖𝑖𝐷𝐷  as performed below : 

𝒍𝒍𝟐𝟐.𝒆𝒆𝒊𝒊𝒊𝒊 = 𝒍𝒍𝟏𝟏.𝒆𝒆𝒊𝒊.𝝋𝝋 + 𝒍𝒍𝟑𝟑.𝒆𝒆𝒊𝒊𝑻𝑻𝟏𝟏 − �𝒙𝒙𝒈𝒈 + 𝒊𝒊𝒚𝒚𝒈𝒈� ( Re-
arranged equation i) 

𝒍𝒍𝟐𝟐.𝒆𝒆𝒊𝒊𝒊𝒊�������� =  𝒍𝒍𝟏𝟏. 𝒆𝒆𝒊𝒊.𝝋𝝋��������� +  𝒍𝒍𝟑𝟑.𝒆𝒆𝒊𝒊𝑻𝑻𝟏𝟏������������������ −  (𝒙𝒙𝒈𝒈 + 𝒊𝒊𝒚𝒚𝒈𝒈������������) ( Taking 
conjugate over the entire equation i) 

Multiplying the above two equation and equating the 
real parts , we get : 

=> ��𝟐𝟐. 𝒍𝒍𝟏𝟏. 𝒍𝒍𝟑𝟑 𝐜𝐜𝐜𝐜𝐜𝐜𝝋𝝋) − (𝟐𝟐. 𝒍𝒍𝟑𝟑.𝒙𝒙𝒈𝒈)� 𝐜𝐜𝐜𝐜𝐜𝐜 𝑻𝑻𝟏𝟏
+ ��𝟐𝟐. 𝒍𝒍𝟏𝟏. 𝒍𝒍𝟑𝟑 𝐜𝐜𝐢𝐢𝐬𝐬𝝋𝝋)
− (𝟐𝟐. 𝒍𝒍𝟑𝟑.𝒚𝒚𝒈𝒈 �� 𝐜𝐜𝐢𝐢𝐬𝐬 𝑻𝑻𝟏𝟏 − [ 𝒍𝒍𝟏𝟏𝟐𝟐 + 𝒍𝒍𝟑𝟑𝟐𝟐 + 𝒙𝒙𝒈𝒈𝟐𝟐

+ 𝒚𝒚𝒈𝒈𝟐𝟐 − 𝒍𝒍𝟐𝟐𝟐𝟐 − 𝟐𝟐. 𝒍𝒍𝟏𝟏.𝒙𝒙𝒈𝒈. 𝐜𝐜𝐜𝐜𝐜𝐜𝝋𝝋
− 𝟐𝟐. 𝒍𝒍𝟏𝟏 .𝒚𝒚𝒈𝒈. 𝐜𝐜𝐢𝐢𝐬𝐬𝝋𝝋� = 𝟎𝟎 

On solving for  𝑻𝑻𝟏𝟏:  

𝑨𝑨𝟏𝟏 =  (𝟐𝟐. 𝒍𝒍𝟏𝟏. 𝒍𝒍𝟑𝟑 𝐜𝐜𝐜𝐜𝐜𝐜𝝋𝝋) − (𝟐𝟐. 𝒍𝒍𝟑𝟑.𝒙𝒙𝒈𝒈) 

𝑩𝑩𝟏𝟏 = (𝟐𝟐. 𝒍𝒍𝟏𝟏. 𝒍𝒍𝟑𝟑 𝐜𝐜𝐢𝐢𝐬𝐬𝝋𝝋) − (𝟐𝟐. 𝒍𝒍𝟑𝟑.𝒚𝒚𝒈𝒈 ) 

𝑪𝑪𝟏𝟏 =  𝒍𝒍𝟏𝟏𝟐𝟐 + 𝒍𝒍𝟑𝟑𝟐𝟐 + 𝒙𝒙𝒈𝒈𝟐𝟐 + 𝒚𝒚𝒈𝒈𝟐𝟐 − 𝒍𝒍𝟐𝟐𝟐𝟐 − 𝟐𝟐. 𝒍𝒍𝟏𝟏.𝒙𝒙𝒈𝒈. 𝐜𝐜𝐜𝐜𝐜𝐜𝝋𝝋
− 𝟐𝟐. 𝒍𝒍𝟏𝟏 .𝒚𝒚𝒈𝒈. 𝐜𝐜𝐢𝐢𝐬𝐬𝝋𝝋 

𝑻𝑻𝟏𝟏 = 𝟐𝟐. 𝐭𝐭𝐭𝐭𝐬𝐬−𝟏𝟏

⎣
⎢
⎢
⎢
⎡�𝑩𝑩𝟏𝟏 + �𝑨𝑨𝟏𝟏𝟐𝟐 + 𝑩𝑩𝟏𝟏𝟐𝟐 − 𝑪𝑪𝟏𝟏𝟐𝟐

𝟐𝟐
�

(𝑨𝑨𝟏𝟏 − 𝑪𝑪𝟏𝟏)
⎦
⎥
⎥
⎥
⎤
 

Solving equation (i) by taking  𝑙𝑙3   𝑒𝑒𝑖𝑖 𝑇𝑇1  on one side and 
all the other terms on the other side , then multiplying 
the corresponding terms of each side  with the 
equation formed by taking conjugate of 𝑙𝑙3   𝑒𝑒𝑖𝑖 𝑇𝑇1  on 
either side of the equation , we eliminate the term 
𝑒𝑒𝑖𝑖𝑇𝑇1  . On equating the real parts and solving for D , we 
get  : 

𝑨𝑨𝟐𝟐 = 𝟐𝟐. 𝒍𝒍𝟐𝟐.𝒙𝒙𝒈𝒈 − 𝟐𝟐. 𝒍𝒍𝟏𝟏. 𝒍𝒍𝟐𝟐. 𝐜𝐜𝐜𝐜𝐜𝐜𝝋𝝋 

𝑩𝑩𝟐𝟐 = 𝟐𝟐. 𝒍𝒍𝟐𝟐.𝒙𝒙𝒈𝒈 − 𝟐𝟐. 𝒍𝒍𝟏𝟏. 𝒍𝒍𝟐𝟐. 𝐜𝐜𝐢𝐢𝐬𝐬𝝋𝝋 

𝑪𝑪𝟐𝟐 = 𝒍𝒍𝟏𝟏𝟐𝟐 + 𝒍𝒍𝟐𝟐𝟐𝟐 + 𝒙𝒙𝒈𝒈𝟐𝟐 + 𝒚𝒚𝒈𝒈𝟐𝟐 − 𝒍𝒍𝟑𝟑𝟐𝟐 − 𝟐𝟐. 𝒍𝒍𝟏𝟏.𝒙𝒙𝒈𝒈. 𝐜𝐜𝐜𝐜𝐜𝐜𝝋𝝋 
− 𝟐𝟐. 𝒍𝒍𝟏𝟏.𝒚𝒚𝒈𝒈. 𝐜𝐜𝐢𝐢𝐬𝐬𝝋𝝋 

𝒊𝒊 = 𝟐𝟐. 𝐭𝐭𝐭𝐭𝐬𝐬−𝟏𝟏

⎣
⎢
⎢
⎢
⎡�𝑩𝑩𝟐𝟐 + �𝑨𝑨𝟐𝟐𝟐𝟐 + 𝑩𝑩𝟐𝟐𝟐𝟐 − 𝑪𝑪𝟐𝟐𝟐𝟐

𝟐𝟐
�

(𝑨𝑨𝟐𝟐 − 𝑪𝑪𝟐𝟐)
⎦
⎥
⎥
⎥
⎤
 

 

Let P and Q be two variables that assumes the value : 

𝑷𝑷 =  𝒍𝒍𝟐𝟐 . 𝐜𝐜𝐜𝐜𝐜𝐜𝒊𝒊 + 𝒍𝒍𝟒𝟒. 𝐜𝐜𝐜𝐜𝐜𝐜(𝒂𝒂 + 𝑻𝑻𝟏𝟏 − 𝝅𝝅) − 𝒙𝒙𝒅𝒅 + 𝒙𝒙𝒈𝒈 

𝑸𝑸 =  𝒍𝒍𝟐𝟐. 𝐜𝐜𝐢𝐢𝐬𝐬𝒊𝒊 + 𝒍𝒍𝟒𝟒. 𝐜𝐜𝐢𝐢𝐬𝐬(𝒂𝒂 + 𝑻𝑻𝟏𝟏 − 𝝅𝝅) − 𝒚𝒚𝒅𝒅 + 𝒚𝒚𝒈𝒈 

On substituting the value of P and Q in equation (ii) , 
equation (ii) takes the following form  : 

𝑙𝑙6. 𝑒𝑒𝑖𝑖𝑇𝑇2 = 𝑃𝑃 + 𝑖𝑖𝑖𝑖 − 𝑙𝑙5. 𝑒𝑒𝑖𝑖𝑖𝑖  ( Substituted in 
equation ii) 

Solving equation (ii) by taking  𝑙𝑙6   𝑒𝑒𝑖𝑖 𝑇𝑇2  on one side and 
all the other terms on the other side, then multiplying 
the corresponding terms of each side with the 
equation formed by taking conjugate of 𝑙𝑙6  𝑒𝑒𝑖𝑖 𝑇𝑇2  on 
either side of the equation , we eliminate the term 
𝑒𝑒𝑖𝑖𝑇𝑇2  . On equating the real parts and solving for  , we 
get : 

𝑨𝑨𝟑𝟑 = 𝟐𝟐.𝑷𝑷. 𝒍𝒍𝟓𝟓 

𝑩𝑩𝟑𝟑 = 𝟐𝟐.𝑸𝑸. 𝒍𝒍𝟓𝟓 

𝑪𝑪𝟑𝟑 = 𝒍𝒍𝟔𝟔𝟐𝟐 − 𝑷𝑷𝟐𝟐 − 𝑸𝑸𝟐𝟐 − 𝒍𝒍𝟓𝟓𝟐𝟐 

𝟁𝟁 = 𝟐𝟐. 𝐭𝐭𝐭𝐭𝐬𝐬−𝟏𝟏

⎣
⎢
⎢
⎢
⎡�𝑩𝑩𝟑𝟑 − �𝑨𝑨𝟑𝟑𝟐𝟐 + 𝑩𝑩𝟑𝟑𝟐𝟐 − 𝑪𝑪𝟑𝟑𝟐𝟐

𝟐𝟐
�

(𝑨𝑨𝟑𝟑 − 𝑪𝑪𝟑𝟑)
⎦
⎥
⎥
⎥
⎤
 

Solving equation (ii) by taking  𝑙𝑙5   𝑒𝑒𝑖𝑖 𝑖𝑖 on one side and 
all the other terms on the other side, then multiplying 
the corresponding terms of each side with the 
equation formed by taking conjugate of 𝑙𝑙5   𝑒𝑒𝑖𝑖 𝑖𝑖 on 
either side of the equation, we eliminate the term  
𝑒𝑒𝑖𝑖𝑖𝑖 . On equating the real parts and solving for 𝑇𝑇2 , we 
get: 

𝐴𝐴4 = 2.𝑃𝑃. 𝑙𝑙6 

𝐵𝐵4 = 2.𝑖𝑖. 𝑙𝑙6 

𝐶𝐶4 = 𝑙𝑙52 − 𝑃𝑃2 − 𝑖𝑖2 − 𝑙𝑙62 
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𝑻𝑻𝟐𝟐 =  𝟐𝟐. 𝐭𝐭𝐭𝐭𝐬𝐬−𝟏𝟏

⎣
⎢
⎢
⎢
⎡�𝑩𝑩𝟒𝟒 + �𝑨𝑨𝟒𝟒𝟐𝟐 + 𝑩𝑩𝟒𝟒𝟐𝟐 − 𝑪𝑪𝟒𝟒𝟐𝟐

𝟐𝟐
�

(𝑨𝑨𝟒𝟒 − 𝑪𝑪𝟒𝟒)
⎦
⎥
⎥
⎥
⎤
  

From figure 1 , the x and y co-ordinate of the end 
effector respectively are : 

𝑿𝑿 = 𝒍𝒍𝟓𝟓. 𝐜𝐜𝐜𝐜𝐜𝐜𝒊𝒊 + 𝒍𝒍𝟔𝟔. 𝐜𝐜𝐜𝐜𝐜𝐜𝑻𝑻𝟐𝟐
+ 𝒍𝒍𝟕𝟕 . 𝐜𝐜𝐜𝐜𝐜𝐜(𝝅𝝅 − 𝒃𝒃 + 𝑻𝑻𝟐𝟐) + 𝒙𝒙𝒅𝒅 

𝒀𝒀 = 𝒍𝒍𝟓𝟓. 𝐜𝐜𝐢𝐢𝐬𝐬𝒊𝒊 + 𝒍𝒍𝟔𝟔 . 𝐜𝐜𝐢𝐢𝐬𝐬𝑻𝑻𝟐𝟐
+ 𝒍𝒍𝟕𝟕. 𝐜𝐜𝐢𝐢𝐬𝐬(𝝅𝝅 − 𝒃𝒃 + 𝑻𝑻𝟐𝟐) + 𝒚𝒚𝒅𝒅 

X  and  Y  defines the co-ordinate of the end-
effector. The trajectory of the Klann mechanism 
has been simulated on Matcad , using the set of 
equations mentioned above .  Different cases of 
gaits pertaining to debris removal and excavation 
has been explored.  

CASE I : On taking ,  𝑙𝑙1 = 24, 𝑙𝑙2 = 33 , 𝑙𝑙3 =
63, 𝑥𝑥𝑔𝑔 = −58 ,𝑦𝑦𝑔𝑔 = −14 , 𝑙𝑙4 = 50 ,𝑎𝑎 =
160° , 𝑙𝑙5 = 50 , 𝑙𝑙6 = 45, 𝑏𝑏 = 160° , 𝑙𝑙7 =
110 , 𝑥𝑥𝑑𝑑 = −50 ,𝑦𝑦𝑑𝑑 = 30  , we are able to 
generate the default trajectory for the end-
effectors of the Klann mechanism(Fig 5). 

CASE II : On taking :   𝑙𝑙1 = 24, 𝑙𝑙2 = 30 , 𝑙𝑙3 =
64, 𝑥𝑥𝑔𝑔 = −58 ,𝑦𝑦𝑔𝑔 = −14 , 𝑙𝑙4 = 57 ,𝑎𝑎 =

160° , 𝑙𝑙5 = 77 , 𝑙𝑙6 = 80, 𝑏𝑏 = 160° , 𝑙𝑙7 =
110 , 𝑥𝑥𝑑𝑑 = −50 ,𝑦𝑦𝑑𝑑 = 30  , we are able to 
generate the digging motion trajectory for the 
end-effectors of the Klann mechanism(Fig 6). 

CASE III : On taking :   𝑙𝑙1 = 24, 𝑙𝑙2 = 44 , 𝑙𝑙3 =
75, 𝑥𝑥𝑔𝑔 = −58 ,𝑦𝑦𝑔𝑔 = −14 , 𝑙𝑙4 = 70 ,𝑎𝑎 =
160° , 𝑙𝑙5 = 80 , 𝑙𝑙6 = 40, 𝑏𝑏 = 160° , 𝑙𝑙7 =
140 , 𝑥𝑥𝑑𝑑 = −50 ,𝑦𝑦𝑑𝑑 = 30  , we are able to 
generate the striking motion trajectory for the 
end-effectors of the Klann mechanism(Fig 7). 

CASE IV : On taking :   𝑙𝑙1 = 24, 𝑙𝑙2 = 44 , 𝑙𝑙3 =
75, 𝑥𝑥𝑔𝑔 = −58 ,𝑦𝑦𝑔𝑔 = −14 , 𝑙𝑙4 = 70 ,𝑎𝑎 =
160° , 𝑙𝑙5 = 80 , 𝑙𝑙6 = 50, 𝑏𝑏 = 160° , 𝑙𝑙7 =
140 , 𝑥𝑥𝑑𝑑 = −50 ,𝑦𝑦𝑑𝑑 = 30  , we are able to 
generate the scrounging motion trajectory for the 
end-effectors of the Klann mechanism(Fig 8). 

CASE V : On taking :   𝑙𝑙1 = 24, 𝑙𝑙2 = 44 , 𝑙𝑙3 =
75, 𝑥𝑥𝑔𝑔 = −58 ,𝑦𝑦𝑔𝑔 = −14 , 𝑙𝑙4 = 70 ,𝑎𝑎 =
160° , 𝑙𝑙5 = 85 , 𝑙𝑙6 = 80, 𝑏𝑏 = 160° , 𝑙𝑙7 =
110 , 𝑥𝑥𝑑𝑑 = −50 ,𝑦𝑦𝑑𝑑 = 30  , we are able to 
generate the hammering motion trajectory for 
the end-effectors of the Klann mechanism(Fig 9). 
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IV. PROGRAMMING THE PROBLEM ON MATHCAD 

Since programming on Mathcad allows us to take 
angle in radian the input angle φ in degrees is 
defined in terms of a variable fac . Since the input 
angle φ changes its value , it has been considered 
as a vector with values varying over a range from 
1 to 360  : 

𝑓𝑓𝑎𝑎𝑓𝑓 = 𝜋𝜋
180

, 𝑖𝑖 = 1. .360 , 𝜑𝜑𝑖𝑖 = (i-1).fac 

The x co-ordinate and the y co-ordinate (X , Y ) 
are function of input variable 𝜑𝜑𝑖𝑖 , which changes 
as i varies between 1 to 360. The time elapsed by 
the time the input angle 𝜑𝜑𝑖𝑖 changes from 0⁰ to   

(i-1)⁰ is defined by , 𝑡𝑡𝑖𝑖 , where 𝑡𝑡𝑖𝑖 = 𝑖𝑖−1
𝜔𝜔

 and ω is 

the angular velocity in radians/minute. 

𝑉𝑉𝑥𝑥𝑗𝑗 = �𝑋𝑋𝑗𝑗+1−𝑋𝑋𝑗𝑗−1�
(𝑡𝑡𝑗𝑗+1−𝑡𝑡𝑗𝑗−1)

 ,  

𝑉𝑉𝑦𝑦𝑗𝑗 =
�𝑌𝑌𝑗𝑗+1 − 𝑌𝑌𝑗𝑗−1�
(𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗−1)

 

𝑉𝑉𝑥𝑥 and 𝑉𝑉𝑦𝑦 are the velocities in the x and y 
direction respectively 

𝛼𝛼𝑥𝑥𝑗𝑗 =
�𝑉𝑉𝑥𝑥𝑗𝑗+1 − 𝑉𝑉𝑥𝑥𝑗𝑗−1�

(𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗−1)
 

𝛼𝛼𝑦𝑦𝑗𝑗 =
�𝑉𝑉𝑦𝑦𝑗𝑗+1−𝑉𝑉𝑦𝑦𝑗𝑗−1�

(𝑡𝑡𝑗𝑗+1−𝑡𝑡𝑗𝑗−1)
            

𝛼𝛼𝑥𝑥 and 𝛼𝛼𝑦𝑦   are  the linear acceleration in the x 
and y direction respectively.  

V. INFERENCES DRAWN 

For Case II , the curve for   𝛼𝛼𝑥𝑥 and 𝛼𝛼𝑦𝑦 are : 

              

Figure 10 
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Figure 11 

The linear acceleration in the y-direction ( 𝛼𝛼𝑦𝑦) is 
maximum at 194⁰ .On plotting the curve between 
the ω (input angular velocity) and the 𝛼𝛼𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥

 , it 

has been observed that the value of  
𝛼𝛼𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥

increases quadratically with increase in ω. 

  

Table 1     

 

Figure 12 

On using quadratic regression method of fitting the 
data-points , the equation of the curve was found to 
be 𝒚𝒚 = 0.0891𝒙𝒙𝟐𝟐 with maximum percentage error of 
0.1 % at the first point. 

On using cubic regression the coefficient of 𝑥𝑥3 is 
extremely small and its contribution is negligible. 

𝒚𝒚 = -2.334079 + 0.04317026 𝒙𝒙 + 0.08904724𝒙𝒙𝟐𝟐 + 
847044e-9𝒙𝒙𝟑𝟑 

The co-efficient of 𝑥𝑥 and 𝑥𝑥2 are comparable and 
several orders greater than the co-efficient of  𝑥𝑥3 ,   
hence the acceleration curve can essentially be 
considered quadratic. 

It can be inferred from  Figure 9 that vertical impact 
for digging will increase following a quadratic curve. 

For Case IV , The curve for  𝛼𝛼𝑥𝑥 and 𝛼𝛼𝑦𝑦 are: 

 

Figure 13 

 

Figure 14 
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The linear acceleration in the y-direction ( 𝛼𝛼𝑦𝑦) and x-
direction (𝛼𝛼𝑥𝑥) is maximum at 191⁰  and 192⁰ 
respectively. Table 2 shows the plot of ω against 
𝛼𝛼𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥

 .  

 

Table 2 

 

Figure 15 

On using quadratic regression method of fitting the 
data-points , the equation of the curve was found to 
be 𝒚𝒚 = 0.06571𝒙𝒙𝟐𝟐 with maximum percentage error of 
0.4 % at the first point. 

The equation for the cubic regression method best-fit 
curve for 𝛼𝛼𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥

 against ω is : 

𝒚𝒚 = 1.017991 - 0.02134618𝒙𝒙 + 0.06573632𝒙𝒙𝟐𝟐 - 
2.419626e-9𝒙𝒙𝟑𝟑 

The co-efficient of 𝑥𝑥 and 𝑥𝑥2 are comparable and 
several orders greater than the co-efficient of  𝑥𝑥3 ,   
hence the acceleration curve can essentially be 
considered quadratic.  

If ω is a linear function in time then linear acceleration 
is a quadratic function in time and the ω versus 𝛼𝛼 

curve is quadratic in nature.  This implies , ω versus V 
is a cubic curve and ω versus X or Y is a  bi-quadratic 
curve. This also means 𝜑𝜑  versus  X or 𝜑𝜑  versus Y is a 
curve of the fifth order. Thus to define the trajectory 
of the end-effector of the Klann mechanism whose 
input link has constant acceleration or deceleration , a 
fifth order equation in time is required . 

The  𝛼𝛼𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥
 is a measure of the vertical impact 

force that the end-effector imparts on the ground 
and itself experiences as a reaction. This analysis 
helps in understanding how the impact force 
varies with change in the input angular velocity 
(ω). A choice of material to design the linkages 
and the end effector can also be made if the 
range of the rpm of the input motors are known.  

  

VI. CONCLUSION 

A original design approach has been  presented in this 
paper  towards the development of trajectory 
generator that takes the length of the links as input 
and plots the trajectory with change in the input angle 
𝜑𝜑 .These trajectories can be realized with 
reconfigurable links .Although not all the links of the 
Klann mechanism can be made reconfigurable we 
were able to confirm that various gaits pertaining to 
debris removal is achievable from a single set of  
robotic leg based on reconfigurable links . All these 
trajectories are salient curves with regard to the kind 
of operation the robot will perform. It has also been 
found that all these trajectories has its substantial 
lower portion in contact with the ground marked in 
green along the Y-axis in Figure 5 through till Figure 9. 
This indicates that the trajectories are compatible 
with not much change in the height of the platform 
when the legs change the gaits from one form to the 
other. While designing the linkages and choosing the 
motors it must be realized that the impact force 
changes following a quadratic curve with the rpm of 
the motor. All trajectories for gaits of debris removal 
has a point on the acceleration curve where its value 
is maximum. They are also the point in the trajectory 
where the end-effector makes the greatest impact 
with the environment. Many more useful trajectories 
can be created with intermediate link lengths apart 
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from the ones identified. The link lengths provided in 
this work can act as a guideline for generating these 
trajectories at various scales where each of the 
dimensions can be proportionally changed. 
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